Dark matter—the unseen 80 percent of the universe’s mass—doesn’t emit, absorb or reflect light. Astronomers know it exists only because it interacts with our slice of the ordinary universe through gravity. Hence the hunt for this missing mass has focused on so-called WIMPs—Weakly Interacting Massive Particles—which interact with each other as infrequently as they interact with normal matter.
Physicists have reasons to look for alternatives to WIMPs. For two decades, astronomers have found less dark matter at the centers of galaxies than what WIMP models suggest they should. The discrepancy is even worse at the cores of the universe’s tiny dwarf galaxies, which have few ordinary stars but lots of dark matter.
About four years ago, James Bullock, a professor of physics and astronomy at the University of California, Irvine, began to wonder whether the standard view of dark matter was failing important empirical tests. “This was the point where I really started thinking hard about alternatives,” he said.
Bullock thinks that dark matter might instead be complex, something that interacts with itself strongly in the way that ordinary matter interacts with itself to form intricate structures like atoms and atomic elements. Such a self-interacting dark matter, Bullock suspects, could exist in a “dark sector,” somewhat parallel to our own light sector, but detectable only through the way it affects gravity.
He and his colleagues have created numerical simulations that predict what the universe would look like if dark matter feels strong interactions. They expected to see the model fail. Instead, they found that it was consistent with what astronomers observe.
Read the entire article:
http://www.wired.com/2015/08/dark-matter-may-complex-physicists-thought/
No comments:
Post a Comment